分数与整数教案6篇

时间:
Lonesome
分享
下载本文

教师通过详尽的教案,能够更好地组织课堂活动,增强学生的学习兴趣,教案中的评价机制能够激励学生积极参与,促进他们对知识的深入理解与掌握,淘一范文网小编今天就为您带来了分数与整数教案6篇,相信一定会对你有所帮助。

分数与整数教案6篇

分数与整数教案篇1

教材分析

?分数乘整数》是义务课程标准实验教科书小学数学六年级上册第二单元的内容。从学生已有的知识经验出发合理地使用教材,本课教学重点是让学生理解算理、掌握计算法则。

学情分析

本课是在整数乘法和分数加法的基础上学习的,通过直观操作帮助学生理解算理并正确进行计算,在此基础上拓宽学生的知识面。

教学目标

知识与能力:

在学生已有的分数加法及分数基本意义的基础上,结合生活实例,通过对分数连加算式的研究,使学生理解分数乘整数的`意义,掌握分数乘整数的计算方法,能够应用分数乘整数的计算法则,比较熟练地进行计算。

过程与方法:

通过观察比较,指导学生通过体验,归纳分数乘整数的计算法则,培养学生的抽象概括能力。

情感态度与价值观:

引导学生探求知识的内在联系,激发学生学习兴趣。通过演示,使学生初步感悟算理,并在这过程中感悟到数学知识的魅力,领略到美。

教学重点和难点

教学重点:使学生理解分数乘整数的意义,掌握分数乘整数的计算方法。

教学难点:引导学生总结分数乘整数的计算法则。

教学过程

分数与整数教案篇2

教学目标 :

1. 通过知识迁移,使学生明确求一个数的几分之几是多少可以用乘法进行计算。

2. 通过操作活动使学生理解分数乘分数的算理,并经过观察、猜测、验证归纳出分数乘分数的计算方法,并能熟练计算。

3. 通过对算理、算法的探究培养学生的观察力、推理能力、归纳能力。

教学重点:

掌握分数乘分数的计算方法,并能熟练计算。

教学难点:

理解分数乘分数的乘法意义及算理。

教具准备:

多媒体课件。

教学过程:

一、导入新课(激发兴趣,明确目标)

1. (课件出示一个正方形)这个正方形我们可以用数字“1”表示。现在涂色部分是它的几分之几? ( )

2. 如果取这 的 ,现在得到的是整个正方形的几分之几?(看图得出结论 )

3. 如果再取这 的 ,又是多少呢?你是怎么想的?(在学生回答后再出示图验证)

?设计意图:讲课一开始采用了看图说分数的方式引入,既是对分数意义的一个回顾,也为本节课理解分数乘分数的算理提供了形的依托。】

二、合作探究(小组合作,解决问题)

出示例3情境图,说说从图上你获得了哪些信息,可以解决什么问题?(根据学生的回答板书两个问题并请学生先看第一个问题)

(一)探究几分之一乘几分之一的算理算法

1. 求种土豆的面积是多少公顷,我们可以怎么列式?你是怎么想的?(如果学生有困难,可以从上节课的整数乘分数的意义进行类推)

求一个数的几分之几,我们可以用乘法来计算。

2. 等于多少呢?说说你的想法,并把你的想法在纸上写下来。

3. 学生进行尝试(可引导学生用画图的方式来解释自己的想法)。

4. 进行交流反馈

重点反馈描画涂色的想法,并在学生讲解后,教师再利用课件进行讲解巩固

把1个正方形看作1公顷,先平均分成2份,每份表示 公顷,再把 公顷平均分成5份,取其中的一份。也就是把1公顷平均分成(2×5)份,取其中的一份,就是 公顷。

5. 得出结果

根据大家的想法, 。我们再来看看本节课开始的图形,是不是也可以用乘法算式来表示?

6. 猜想计算方法

观察这几个算式,说说你发现了什么?你觉得几分之一乘几分之一可以怎样计算?这个方法可以推广到所有分数乘分数的计算中吗?

?设计意图:尊重学生,培养学生的学习探索能力是很重要的。本节课的教学除了有之前所学分数的意义作为基础之外,学生还在前一课时明确了整数乘分数可以用来表示一个数的几分之几是多少,因此在本堂课中完全可以放手让学生们自己去思考、学习、尝试,教师只要起到一定的点拨作用就可以了。】

(二)探究几分之几乘几分之几的算理算法

1. 尝试猜想

请你试着用这个方法解决第二个问题:求 公顷的 ,用乘法算式表示就是 。根据我们刚才的想法,结果应该是?( 公顷)。这个猜想正确吗?能不能想办法来进行验证?在老师提供的练习纸中画一画、算一算,并和同桌进行交流,有困难的学生也可以打开课本第4页看一看。

2. 探究验证。学生自行探索分数乘法的计算方法。(探索完成的学生可以完成例3做一做第2题进一步验证)

3. 验证反馈

(1)请几个采用不同验证方法的学生进行一一展示。

(预计方法:a. 画图(图形或线段);b. 转化成小数再进行计算;c. 利用分数的意义进行计算)

(2)请已经完成例3做一做2的学生说一说自己计算的结果及得到的想法。

4. 得出结论

看来我们的猜想是正确的,分数乘分数如何计算?在同学讨论回答后得出结论:分数乘分数,用分子相乘的积作分子,用分母相乘的积作分母。

?设计意图:猜想——举例——验证——得出结论是学生学习数学的一种方式,在本节课的设置上先提供了探索的范例,再让学生提出猜想,最后通过举例、验证形成共识,得到分数乘分数的计算法则,理解算理,使学生既获得了探索的体验,又掌握了基础知识。】

三、展示交流(展示交流,调拨归纳)

简化计算过程

根据我们所得的.结论,试着解决下面的问题

出示例4:无脊椎动物中游泳最快的是乌贼,它的速度是 千米/分。

(1)李叔叔的游泳速度是乌贼的 。李叔叔每分钟游多少千米?

(2)乌贼30分钟可以游多少千米?

1. 读题,独立列式并解答。

2. 反馈

(1)题(1)展示不同的计算过程:a、先计算再约分;b、先约分再计算。

(2)题(2)明确整数与分数相乘,可以在计算时直接将整数和分母约分,结合学生的情况说明约分的书写格式。

(3)对比体会得出结论:在计算时,先仔细观察数的特征,能约分的先约分再乘,会比较简单。

3. 练习

例4做一做1。

?设计意图:培养简便计算的意识对于提高学生计算的准确性和速度至关重要。让学生通过计算和对比体会到在分数乘法中先约分再计算比较简单,对培养学生的简算意识很有帮助。】

四、拓展总结(应用拓展,盘点收获)

1.基础练习

(1)先看数再计算(练习一6、7两题)

反馈校对、纠错。

在反馈时通过对比、纠错让学生明白先观察数的特征,可以约分的先约分再计算,这样能又对又快地得到结果。

预计错题,估计错例:由于4和 的分子相同,学生有可能会将整数4与分子4相约分,在计算 时,结果错算成 。应该使学生明确:整数与分数相乘,可将整数与分母约分(也就是把整数看成分母是1的分数),再进行计算。

?设计意图:将练习一的6、7两题并在一起,并将题目的考查形式改成先看数再计算,有助于学生形成计算的审题习惯。让学生发现通过观察可以感知数的特征并进行约分,这样可以让计算变得更加简单,正确率也可以得到更大的提升。第6题不以改错的方式出现,而直接以计算题的方式出现,是出于不强加错的思考,来自于学生的错例,学生更易于记在心上。】

(2)完成例3、例4做一做剩下的题

反馈校对、纠错。

在校对答案后,可以进行小结,使学生进一步明确:分数乘法就是求一个数的几分之几是多少的运算。

2.练习提升

在○里填“>”“<”或“=”。想一想,哪些式子,你不计算就可以直接填出来?

○ ○ ○ ○

反馈:请学生说说自己的想法,哪些式子可以不计算就直接得出结果。

(1)题1、题3主要引导学生从分数乘法的意义来理解;

(2)题2、题4主要是对分数计算方法的巩固。

?设计意图:计算的练习往往比较枯燥,这时题目的设计就显得比较重要了。本题的设计让学生们在练习反馈中既对分数乘法的意义进行了回顾,又将整数乘分数和分数乘分数的意义进行对比,还对计算方法进行了巩固和应用,对学生的思维的拓展也是大有益处的。】

3.拓展总结

这节课我们学习了什么?我们是怎样得出这些结论的?

没错,“猜想——举例——验证——得出结论”是我们学习数学很有效的方法,在以后的学习中,同学们可以用这样的思路去学习更多的数学知识。

?设计意图:在对本节课的小结中,对猜想——举例——验证——得出结论的数学学习方法进行回顾,对于六年级的学生来说很重要。】

分数与整数教案篇3

教学内容:

教材第2页例1练习一1~3。

教学目标:

1、结合具体情境,借助示意图理解分数乘整数的意义,渗透数形结合思想。

2、借助转化的方法理解分数乘整数的算理,并能正确地进行计算,提高计算能力。

3、在探索与交流活动中培养观察、推理的能力。

教学重点:

理解他数乘整数的意义,掌握分数乘整数的计算方法。

教学难点:

理解分数乘整数的计算方法。

教学过程:

一、复习旧知,引出课题。

1、复习题。

(1)列式并根据题意说出算式中的两个乘数各表示什么。

5个12是多少? 9个11是多少? 8个6是多少?

提问:通过解决这三道整数乘法计算题,你有什么想说的吗?

(整数乘法是表示几个相同加数的和的简便运算)

(2)计算:

计算 时向学生提问:这道题的什么特点?计算时把什么做分子?使学生看到三个加数都相同,计算时3个3连加的结果做分子,分母不变。

2、引出课题。

这题我们还可以怎么计算?今天我们就来学习分数乘法。

二、创设情境,探究分数乘整数。

1、教学分数乘整数的意义。

出示例1,指名读题。小新、爸爸、妈妈一起吃一个蛋糕,每人吃 个,3人一共吃多少个?

(1)分析演示

题中的:小新、爸爸、妈妈一起吃一个蛋糕,每人吃 个意思什么?(每人吃了整个蛋糕的 )

确定标准量(单位1)和比较量。每人吃了整个蛋糕的 ,是把整个蛋糕看作标准量(单位1);把每人吃的份数看作比较量。

借助示意图理解题意

根据题意列出加法算式 + +

(2)观察引导:这道题3个加数有什么特点?使学生看到3个加数的分数相同。

教师问:求三个相同分数的和怎样列式比较简便呢?引导学生列出乘法算式。教师板书: 。再启发学生说出 表示求3个 相加的和。

(3)比较 和125两种算式异同

提示:从两算式表示的意义和两算式的特点进行比较。(让学生展开讨论)。

通过讨论使学生得出:相同点:两个算式表示的意义相同。

不同点: 是分数乘整数,125是整数乘整数。

(4)概括总结

教师明确:两个算式表示的意义相同,谁能用一句话概括出两算式的意义?(引导学生说出都是表示求几个相同加数的和。)

2、教学分数乘以整数的计算法则。

(1)推导算理:由分数乘整数的意义导入。

问: 表示什么意义?引导学生说出表示求3个 的'和。板书: + + 。学生计算,教师板书: 。提示:分子中3个2连加简便写法怎么写?学生答后板书: (块)教师说明:计算过程中间的加法算式部分是为了说明算理,计算时省略不写。(边说边加虚线)

(2)引导观察: 的分子部分、分母与算式 两个数有什么关系?(互相讨论)

观察结果: 的分子部分23就是算式中 的分子2与整数3相乘,分母没有变。

(3)概括总结:请根据观察结果总结 的计算方法。(互相讨论)

汇报结果:(多找几名学生汇报)使学生得出 是用分数 的分子2与整数3下乘的积作分子,分母不变。

根据 的计算过程,明确指出:分子、分母能约分的要先约分,然后再乘。约分进约得的数要与原数上下对齐。然后让学生将 按简便方法计算。

3、反馈练习:看图写算式:做一做、练习一第1题。

三、全课小结。

分数与整数教案篇4

教学目标

1.通过例2的学习,学生能够理解整数除以分数计算法则的推导过程,引导学生正确地总结出计算法则。

2.能运用法则正确地进行计算。

3.培养学生观察、比较、分析的能力和语言表达能力,培养学生善于抓住事物本质的能力和思维方式。

教学重点

整数除以分数计算法则的推导过程。

教学难点

如何区别、统一分数除以整数、整数除以分数两个计算法则。

教学过程设计

(一)复习旧知

1.说出下面各题的倒数。(投影出示)

2.把算式补充完整。(投影出示)

问:分数除以整数的法则是什么?谁不变?谁变?

生:被除数不变,除号变乘号,除数变成它的倒数。(法则的本质)

问:分数除以整数是把谁变成它的倒数了?为什么?

生:把整数变成它的倒数了,因为整数处在除数的位置。

师:我们上节课学习了分数除以整数的计算法则。这节课我们来学习整数除以分数的计算法则。看谁最善于思考、分析,能正确的总结出计算法则。(板书:整数除以分数)

(二)新授教学

1.一辆汽车2小时行驶90千米。1小时行驶多少千米?

问:①谁会列式计算?

板书: 02=45(千米)

②根据什么这样列式?

生:根据路程时间=速度。

问:要求1小时行驶多少千米就是求什么?

生:求汽车的速度。

问:怎样列式?为什么这样列式?

怎样进行计算呢?我们认真分析一下题意。画出线段图帮助我们寻找解题的方法。

师:根据你们说的老师画图。用一条线段的长表示1小时,把它平

问:怎么求?为什么这样求?

(2)要求1小时行多少千米,怎么求?

算式变化形式:

根据上面的推导过程可得出:

这两个算式相等吗?

我们把这道题完成。

答:汽车1小时行驶45千米。

(3)观察算式:谁没变?谁变了?怎么变的?

讨论:整数除以分数的计算法则是什么?

谁能说一说?

板书:整数除以分数等于整数乘以这个分数的倒数。

同桌互相说一说。

谁愿意给大家说一说?

(4)根据我们总结出的法则,同学们试做下面两道题,看谁做得又对又快。

订正,错的说错在哪里,并改正过程。

(三)巩固练习

1.投影出示。

(1)分数除以整数(0除外)等于分数乘以整数的倒数。

(2)整数除以分数,等于整数乘以分数的倒数。

问:第一个法则整数后面为什么要加上0除外而第二个整数后面就不加了呢?

生:第一个法则整数是处在除数的位置,除数不能为0,所以必须加上0除外;第二个法则中整数处在被除数的位置,可以是0,因此不必加上0除外了。

问:你看这两个法则一会儿变成乘以这个整数的倒数,一会儿变成乘以这个分数的倒数,把我们都弄糊涂了。你有什么办法记清这两个计算法则吗?请把你的好方法讲给你周围的同学听。看谁的方法最好。

问:这两个法则的共同之处在哪儿?谁愿意把你的方法讲给全班同学听?

生:这两个计算法则虽然叙述的不一样,但它们都是被除数不变,除号变乘号,除数变成它的倒数。这样记就不会记错了。

2.把下面各题补充完整。

3.计算。在本上写过程,得数填在书上。

订正,指名把过程写在投影片上。

错的同学说明错因。

4.判断。对的举,错的举,并说明理由。

师:同学们的思维非常敏捷,语言表达能力也很强。同学们对每一道题都是认真观察、思考,这样我们就能避免出现很多不该出的错误。

(四)课堂总结

这节课我们学习了什么内容?整数除以分数的计算法则是什么?还有什么问题?

(五)作业

课本第36页第1,3,4题。

课堂教学设计说明

本节课的内容是整数除以分数的计算法则。这节课有两个难点:

第一是理解整数除以分数的计算法则的推导过程。为了突破这一难点,采用了把例2的条件和问题分别解剖加以分析的方法,引导学生根助学生理解算理,效果很好。

第二是分数除以整数,整数除以分数的计算法则的应用。这一部分内容学生容易产生混乱。为了突破这一难点,教师要调动学生的思维,激发他们的兴趣,使学生抓住了一不变二变这一本质。在练习中教师设计了一组对比练习。加深学生对法则的理解。

分数与整数教案篇5

教学目标

掌握把整数或带分数化成假分数的方法.

教学重点

掌握把整数或带分数化成假分数的方法.

教学难点

把带分数化成假分数.

教学步骤

一、铺垫孕伏

1.口算.

0.45÷15 1.53-0.7 0.4×0.8 4.8×0.02 0.3÷1.5

0.8-0.37 7.8+0.9 0.8×0.5 14-7.4 32+1.68

2.口答.

(1)各表示什么意义?

(2)2个是几分之几?5个是几分之几?12个是几分之几?

3.把下面的假分数化成整数或带分数.

教师提问:xx,表示什么?(表示1与的和)

二、探究新知

你会把假分数化成整数或带分数,那你能把3和化成假分数吗?今天咱们就来学习把整数或带分数化成假分数。(板书课题)

(一)教学例5

1.例5.把1化成分母分别是2、3、4、5……的分数。

出示图片:

2.分别用分数表示出图中阴影部分.(板书)

教师提问:说说为什么这样表示?

3.分组讨论:这说明了什么?

1可以化成分母是任意分数的'假分数。

4.学生举例

(二)教学例6

1.例6.把2和5分别化成分母是3的假分数。

2.学生分组讨论:把2化成分母是3的假分数应怎样想?

想:1里面有3个;2里面有(3×2)个,即,所以。

3.学生试做:把5化成分母是3的假分数。

教师提问:怎样把2和5化成分母是其他数的假分数?由此你得出什么结论?

学生归纳:整数都可以化成分母是任意自然数的假分数.把整数化成假分数,用指定的分母作分母,用分母和整数的乘积作分子。

4.思考:怎样把1、2和5分别化成分母是1的假分数。

归纳总结:把一个整数化成分母是1的假分数,假分数的分子就是这个整数本身,所以整数都可以看成分母是1的分数。

5.练习

(三)教学例7

1.例7.把化成假分数

出示图片

2.分组讨论:是由哪两部分合成的?怎样把化成假分数?

明确:由整数部分2和分数部分合成.把化成假分数时,先把整数2化成分数,再把它和真分数部分合起来。是10个,是4个,合起来是14个,就是,所以。

3.总结:把带分数化成假分数,用原来的分母作分母,用分母和整数的乘积再加上原来的分子作分子.

4.练习:把下面带分数化成假分数,写出计算过程。

三、课堂小结

今天你学会了什么知识?

四、随堂练习

1.在下面的括号里填上适当的数。

2.在下面的○里填上“>”、“<”或“=”。

五、布置作业。

把下面的带分数化成假分数。

六、板书设计

把整数或带分数化成假分数

例5.把1化成分母分别是2,3,4,5,…的分数。

例6.把2和5分别化成分母是3的假分数。

例7.把化成假分数。

分数与整数教案篇6

教学内容:

教科书第8―9页的例1、例2,完成“做一做”及相应的练习。

教学目标:

1、利用类推法引导学生理解分数乘整数的意义与整数乘法的意义 相同;在此基础上通过自主探索、小组合作归纳并掌握分数乘整数的计算法则,且能正确地进行计算。

2、培养学生合作探究的意识及良好的逻辑思维能力。

3、让学生在课堂学习中交流学习数学的感受,获得学习成功的体验。

教学重点:

掌握分数乘整数的计算法则。

教学难点:

计算法则的推导

教学方法:

类推法、猜想验证法、归纳法、小组合作法

教学过程:

一、 复习引入

1、 师口述:

① 5个12是多少?怎样列式?(12×5)

② 6个0.5呢?(0.5×6)

③ 3个 是多少?你会列式吗?( ×3)

师:这是个新内容,大家也会列式,真了不起。知道我们刚才用的是什么数学方法吗?(类推法,类推法就是由原来的旧知根据它们之间的相似处类推出和它实质一样的新知识。这是我们学习数学时常用的一种方法)

2、 引入:这就是今天我们要一起研究的分数乘法中的第一个问题:分数乘整数(板书课题)

二、 合作探究、归纳法则

1、

师:看到这个课题,你都想知道关于它哪些方面的知识?

生1:分数乘整数该怎样计算?

生2:在计算时有什么要求或要注意的地方?

师:同学们的想法可真好。那就请带着这些问题进入我们今天的时空隧道吧。

2、

师:大家知道吗?出示:

人跑一步的距离相当于袋鼠跳一下的 ,人跑3步的距离是袋鼠跳一下的几分之几?

你们有办法解决这个问题吗?好,大家先独立思考,有想法后可以和周围的同学交流一下。

3、

师:谁愿意先来发表一下你的看法?

生1:我列的是加法算式: + +

同分母分数相加减,分母不变,只把分子相加减。

即: + + = =

生2:我列的是乘法算式: ×3

我想:要求人跑3步的.距离是袋鼠跳一下的几分之几,就是求3个 是多少?3个 就是 。

即: ×3=

生3:老师,我列的也是乘法算式: ×3

但我是这样计算的:用分子“2”和整数“3”相乘得6,写在分子的位置上,分母不变。和他们结果一样,也得 。即: ×3= =

师:同学们的做法和想法都不错,哪怕有的是猜想也很了不起!如果大家把乘法和加法联系起来思考,大家的思路会更明朗的。

×3,大家说就是求3个 是多少,我们就可以写成3个 相加的形式,即: ×3= + + = = = 。现在大家再来看 ×3的计算过程,清楚了吧。其实在今后计算时,可以把借助加法思考的这些过程省略,写成: ×3= =

4、

师:观察分数乘整数的计算过程,同桌说一说我们是怎样计算分数乘整数的?

生:分数和整数相乘,用分子和整数相乘的积作分子,分母不变。

师:谁来再说一说?(多找几个学生说说,加深理解和记忆)

三、 运用新知、巩固练习

师:现在你会计算分数乘整数了吗?我们先闯第一关:

⑴计算: ×6(学生独立计算)

⑵成果展示:生1: ×6= =

生2: ×6= = =

生3: ×6= =

师:还有不同的做法吗?好,谁愿意来评价一下这几位同学的做法?

生1:这几位同学的计算方法掌握得都不错,但是第一位同学到最后也没有约分,我觉得这是不对的。

生2:我最欣赏第三位同学的做法,因为他在计算过程中进行了约分,这样计算起来比较简便。

分数与整数教案6篇相关文章:

9的分解与组成教案优秀6篇

幼儿小班美术教案与反思6篇

8的分解与组成教案最新6篇

健康与营养教案优质6篇

圆与方程的教案最新6篇

线与造型美术教案6篇

圆与方程的教案6篇

老鼠与猫音乐教案最新6篇

老鼠与猫音乐教案6篇

魏晋南北朝的科技与文化教案6篇

分数与整数教案6篇
将本文的Word文档下载到电脑,方便收藏和打印
推荐度:
点击下载文档文档为doc格式
点击下载本文文档
134113