编写教案是教师备课的必不可少的一部分,制定有针对性的教案可以更好地帮助学生解决学习难题,下面是淘一范文网小编为您分享的分数除整数的教案8篇,感谢您的参阅。
分数除整数的教案篇1
教学内容:
苏教版义务教育教科书《数学》六年级上册第44~46页例2、例3,,练一练,第47~48页练习七第5~8题。
教学目标:
1.使学生经历探索整数除以分数计算方法的过程,理解并掌握整数除以分数的计算方法,能正确计算整数除以分数的试题。
2.使学生在探索整数除以分数计算方法的过程中,进一步理解分数除法的意义,体会数学知识之间的内在联系。
教学重点:
掌握整数除以分数的计算方法。
教学难点:
理解整数除以分数与相应乘法的相等关系。
教学准备:
多媒体课件
教学过程:
一、复习
1.口算:
2.揭题:整数除以分数。
二、教学例2
1.提问:幼儿园李老师把4个同样大小的橙子分给小朋友。
继续提问:如果每人吃1个,可以分给几个小朋友?
2.出示第(2)题,指名读题,口头列式。
问:解答这个问题,为什么也是用除法计算?
出示挂图,请根据图的意思想一想:可以怎样计算?
先让学生分组讨论,再组织全班交流:
把4个橙子每个分成一份,可分成几份?
板书:=4×2
看到这个等式,你能想到什么?
3.出示第(3)题。
(1)学生读题,列式。
(2)你能在图中分一分,再想出计算结果吗?让学生操作后明确:
(3)出示:
提问:从这两个式子中,你又想到了什么?
三、教学例3
1.出示题目,让学生读题列式。
2.请根据每米剪一段,在图上分一分,看看结果是多少。
3.想一想:可以怎么算,为什么?
板书:
4.归纳和总结:想一想,整数除以分数可以怎么算?
先在小组中说一说,再全班交流。
四、练习
1.做“练一连”第1题。
先让学生各自在书上独立填写,再指名交流。
提问:整数除以分数可以怎样计算?
2.做“练一连”第2题。
各自练习,并指名板演,练习后评议交流。
提醒学生:把分数除法转化成分数乘法后,能约分的可以先约分,再计算。
3.做练习七第5题。
先让学生看图想商是几,再计算。比较看图得出的结果与计算得出的结果是否一致。
4.做练习七第7题。
先计算,再比较:每组中上、下两题有什么联系?
五、作业:练习七第6题和第8题。
六、全课总结:这节课学习了什么?你有什么收获?
分数除整数的教案篇2
教学内容:例7、例8以及练一练,练习九的第1~6题
教学目标
1、知道带分数是假分数,是整数与真分数合成的数。
2、会把假分数化成整数或带分数。
3、使学生经历假分数化成整数或带分数的探索过程,进一步发展数感。
教学重点:会把假分数化成整数或带分数。
教学流程:
一、复习”假分数“,导入假分数化成整数的教学:
1、板书:假分数
问:怎样的分数叫假分数?请你举例说明。(引导学生分类说)
(1)等于”1“的假分数。(分子和分母相同,不为0)
(2)分子是5的'假分数。(分母是1~5,一共有5个)
(3)分母是5的假分数。(分子从5开始依次加1,说不完,说5个,然后加”......“)
2、请依次说出分母是5、分子是分母倍数的假分数。(学生说,老师板书)
5分之5,5分之10,5分之15,5分之20......
问:5分之5也就是多少?(板书:=1)
那5分之10呢?你是怎么想的?
(方法一:想除法,10÷5=2
方法二:想5分之10也就是2个5分之5,1个5分之5是1,2个5分之5就是2。
方法三:画图理解。可以用方块图,也可以用数轴等表示。......)
比较这几种方法,你认为哪种方法最容易呢?
用你喜欢的方法,算一算:5分之15和5分之20分别等于几?
指名交流所用的方法。
3、小结:这几个假分数都能化成整数,想一想,怎样的假分数能化成整数?
你能也说几个这样的假分数吗?
指名说几个这样的分数化成整数。同桌互相说一说。
小结方法:可以把分子除以分母,所得的商就是要化成的那个整数。
4、练习:p.49第1题
学生完成后指名交流。
二、假分数化成带分数的教学:
1、板书5分之14。问:这个假分数能化成整数吗?为什么?
2、探究方法:那应该怎么算?
方法一:14÷5=2......4
商2就是整数部分,余数4就是分子,分母不变。
板书该带分数。指出:这样的分数叫带分数。前面部分叫整数部分,后面是分数部分,只能是真分数。读成:2又5分之4
方法二:把5分之14改写成5分之10加5分之4。5分之10就是2,2加5分之4,加号不写,就写成2又5分之4。
3、连一练:把3分之12,6分之30,5分之8、3分之8化成整数或带分数。
指名交流。说说为什么前面两个能化成整数,后面两个只能化成带分数?
三、巩固练习:
1、(第2题)先用假分数表示下面的涂色部分,再改写成带分数。
2、(第3题)先把假分数化成带分数,再读一读。
3、(第4题)在直线上面的□里填假分数,下面的□里填带分数。
4、(第5题)填空。
5、(第6题)判断大小。要求学生依次说明判断理由。
6、检查学生的预习作业。
四、全课总结。
分数除整数的教案篇3
教学目标
1.通过例2的学习,学生能够理解整数除以分数计算法则的推导过程,引导学生正确地总结出计算法则。
2.能运用法则正确地进行计算。
3.培养学生观察、比较、分析的能力和语言表达能力,培养学生善于抓住事物本质的能力和思维方式。
教学重点
整数除以分数计算法则的推导过程。
教学难点
如何区别、统一分数除以整数、整数除以分数两个计算法则。
教学过程设计
(一)复习旧知
1.说出下面各题的倒数。(投影出示)
2.把算式补充完整。(投影出示)
问:分数除以整数的法则是什么?谁不变?谁变?
生:被除数不变,除号变乘号,除数变成它的倒数。(法则的本质)
问:分数除以整数是把谁变成它的倒数了?为什么?
生:把整数变成它的倒数了,因为整数处在除数的位置。
师:我们上节课学习了分数除以整数的计算法则。这节课我们来学习整数除以分数的计算法则。看谁最善于思考、分析,能正确的总结出计算法则。(板书:整数除以分数)
(二)新授教学
1.一辆汽车2小时行驶90千米。1小时行驶多少千米?
问:①谁会列式计算?
板书: 02=45(千米)
②根据什么这样列式?
生:根据路程时间=速度。
问:要求1小时行驶多少千米就是求什么?
生:求汽车的速度。
问:怎样列式?为什么这样列式?
怎样进行计算呢?我们认真分析一下题意。画出线段图帮助我们寻找解题的方法。
师:根据你们说的老师画图。用一条线段的长表示1小时,把它平
问:怎么求?为什么这样求?
(2)要求1小时行多少千米,怎么求?
算式变化形式:
根据上面的推导过程可得出:
这两个算式相等吗?
我们把这道题完成。
答:汽车1小时行驶45千米。
(3)观察算式:谁没变?谁变了?怎么变的?
讨论:整数除以分数的计算法则是什么?
谁能说一说?
板书:整数除以分数等于整数乘以这个分数的倒数。
同桌互相说一说。
谁愿意给大家说一说?
(4)根据我们总结出的法则,同学们试做下面两道题,看谁做得又对又快。
订正,错的说错在哪里,并改正过程。
(三)巩固练习
1.投影出示。
(1)分数除以整数(0除外)等于分数乘以整数的倒数。
(2)整数除以分数,等于整数乘以分数的倒数。
问:第一个法则整数后面为什么要加上0除外而第二个整数后面就不加了呢?
生:第一个法则整数是处在除数的位置,除数不能为0,所以必须加上0除外;第二个法则中整数处在被除数的位置,可以是0,因此不必加上0除外了。
问:你看这两个法则一会儿变成乘以这个整数的倒数,一会儿变成乘以这个分数的倒数,把我们都弄糊涂了。你有什么办法记清这两个计算法则吗?请把你的好方法讲给你周围的同学听。看谁的方法最好。
问:这两个法则的共同之处在哪儿?谁愿意把你的方法讲给全班同学听?
生:这两个计算法则虽然叙述的不一样,但它们都是被除数不变,除号变乘号,除数变成它的倒数。这样记就不会记错了。
2.把下面各题补充完整。
3.计算。在本上写过程,得数填在书上。
订正,指名把过程写在投影片上。
错的同学说明错因。
4.判断。对的举,错的举,并说明理由。
师:同学们的思维非常敏捷,语言表达能力也很强。同学们对每一道题都是认真观察、思考,这样我们就能避免出现很多不该出的错误。
(四)课堂总结
这节课我们学习了什么内容?整数除以分数的计算法则是什么?还有什么问题?
(五)作业
课本第36页第1,3,4题。
课堂教学设计说明
本节课的内容是整数除以分数的计算法则。这节课有两个难点:
第一是理解整数除以分数的计算法则的推导过程。为了突破这一难点,采用了把例2的条件和问题分别解剖加以分析的方法,引导学生根助学生理解算理,效果很好。
第二是分数除以整数,整数除以分数的计算法则的应用。这一部分内容学生容易产生混乱。为了突破这一难点,教师要调动学生的思维,激发他们的兴趣,使学生抓住了一不变二变这一本质。在练习中教师设计了一组对比练习。加深学生对法则的理解。
分数除整数的教案篇4
教学目标:
1、在解决具体问题的过程中,借助直观图示,理解分数除法的意义,探索分数除以整数除法的计算方法,并能正确进行计算。
2、经历探索分数除以整数计算方法的过程,初步形成独立思考和探索的意识。
3、让学生感受成功的体验。
教学重点、难点:
分数除以整数的计算方法
教具、学具准备:
多媒体、课件
教学过程:
一、教学意义
师:今天来了几位听课的老师,你想怎样在这节课上表现自己?
学生交流。
师:嗯,老师期待你们精彩的表现,不过,不要太紧张,这节课我们只是来帮小猴子解决一些问题,不是很难,不信,你瞧!
出示问题:
(1)每只猴子吃半个桃子,四只猴子一共吃几个桃子?
(2)两个桃子,平均分给四只猴子,每只猴子分多少个?
(3)两个桃子,分给每只猴子半个,可以分给多少只猴子?
学生解决
师:观察这三个算式,想一想,分数除法的意义是怎样的呢?
总结出示:分数除法的意义与整数除法的意义相同,都是已知两个因数的积与其中的一个因数,求另一个因数的运算。
同位互说。
二、探究方法 ,解决问题
1、提出问题,板书课题
师:通过解决小猴子吃桃子的问题,同学们掌握了分数除法的意义,接下来我们看看小猴子又要干什么。
出示课件:
师:根据这条信息,你能帮助小猴子解决怎样的数学问题?
出示问题:
1)做一件背心需要花布多少米?
2)做一件裤子需要花布多少米?
师:对于问题1),该怎样列式呢?
学生列式(为什么这样列式?)
师:观察算式,它有什么特点?
师板书课题。
2、探究方法,汇报交流
师:这个算式该如何算呢?
学生以小组为单位讨论交流。
师巡视指导。
小组汇报
① 折纸或画图的方式(学生说一说)
② 9/10÷3=(9÷3)/10=3/10
师(板书):你是怎么想的?
③ 9/10÷3=0.9÷3=0.3
④ 9/10÷3=9/10×1/3
师(板书):你是怎么想的?
学生说自己的想法(引导学生说:把9/10米平均分成3份,是求9/10的三分之一是多少,所以可以把9/10÷3转化为9/10×1/3。)
师:同学们真棒,探究出这么多方法,你认为哪种方法好呢?
初步优化。
3、师:对于问题2),你能自己解决吗?
学生独立解决。全班交流,订正。
进一步优化方法。
师:看来你们已经初步掌握了计算的方法,那我们试一试计算这两个题?
出示试一试:6/7÷5
5/11÷4
师:现在你认为哪种方法好呢?
4、观察对比,总结方法
师:观察刚才我们的计算过程,谁愿意来总结一下计算方法呢?
学生交流,总结方法,并明白各种方法的局限性及普遍性。
师(出师课件)小结:同位之间互相说一说。
师:还有什么特别注意的吗?强调0除外以及红颜色字眼。
(为了检验你是否真正掌握了方法,老师要考考你)
出示考考你:
4/5÷4=4/5×() 2/3÷6=2/3○() 2/5÷2=()×()
三、反馈练习,巩固提高
师:同学们已经学习了分数除以整数的计算方法,那下面就到了考验大家的时刻了,有信心接受挑战吗?
课件出示:
1、争先恐后 连一连
5/9÷5 7/8÷6 1/10÷9
7/8 ×1/6 1/10×1/9 5/9×1/5
2、大显身手 算一算
10/11÷2 8/9÷8 28/19÷7 15/22÷5
3/2÷2 7/17÷4 2/9÷4 21/25÷14
3、火眼金睛 判一判
(1)2/5÷7=2/5×1/7=2/35 ()
(2)1/2÷3=1/2÷1/3=1/6 ()
(3)3/8÷3=3/8×3=8 ()
(4)3/9÷3=(3÷3)/(9÷3)=1/3 ()
4、解决问题
四、总结交流
师:今天跟大家共同学习,老师非常高兴!你的心情如何呢?你有什么收获呢?
学生交流。
分数除整数的教案篇5
【教学目标】
知识与能力:
1.使学生理解分数乘整数的意义,掌握分数乘整数的计算方法。
2.使学生能够应用分数乘整数的计算法则,比较熟练地进行计算。
过程与方法:
首先复习整数乘法的意义和三个相同分数相同的计算方法,为学习分数乘整数做好准备。然后,通过例题,结合直观图,采用加法与乘法对照的方法,教学分数乘整数的意义和计算方法。
情感态度价值观:
通过观察比较,引导学生探求知识的内在联系,注重培养学生的推理能力,发展学生的思维。
【教学重难点】
1.使学生理解分数乘整数的意义,掌握分数乘整数的计算方法。
2.引导学生总结分数乘整数的计算法则。
【教具、学具】
教具准备:多媒体课件、刻度尺。
学具准备:画图纸、刻度尺、铅笔等相关绘图工具。
【教学过程】
一、铺垫孕伏
(一)出示复习题。
1. 口答:
5个12的和是多少?
10个23的和是多少?
4个0.5的和是多少?
2. 整数乘法的意义是什么?
3.计算:
计算 时向学生提问:这道题的什么特点?计算时把什么做分子?使学生看到三个加数都相同,计算时3个3连加的结果做分子,分母不变。
(二)引出课题。
象上面的题求几个相同的分数相加的和有没有简便的方法呢?这就是今天我们要学习的新课——分数乘法。(板书课题:分数乘整数)
二、探究新知。
(一)教学分数乘整数的意义。
出示例1,小新、爸爸、妈妈一起吃一个蛋糕,每人吃 个,3人一共吃多少个?
指名读题。
1.分析演示:
每人吃 个蛋糕,每人吃的够一块吗?(不够一块)接着出示如课本的三个扇形图。
问:一个人吃了 个,三个人吃了几个 个?使学生从图中看到三个人吃了3个 个。让学生用以前学过的知识解答3个人一共吃了多少个?(教师在3个扇形下面画出大括号并标出?块)订正时教师板书: + + = = = (个),(教师将3个双层扇形图片拼成一个一块蛋糕的 图片)
2.观察引导:
这道题3个加数有什么特点?使学生看到3个加数的分数相同。教师问:求三个相同分数的和怎样列式比较简便呢?引导学生列出乘法算式。教师板书: 。再启发学生说出 表示求3个 相加的和。
3.比较 和12×5两种算式异同:
提示:从两算式表示的意义和两算式的特点进行比较。(让学生展开讨论)。
通过讨论使学生得出:
相同点:两个算式表示的意义相同。
不同点: 是分数乘整数,12×5是整数乘整数。
4.概括总结:
教师明确:两个算式表示的意义相同,谁能用一句话概括出两算式的意义?(引导学生说出都是表示求几个相同加数的和。)
(二)教学分数乘整数的计算法则。
ppt出示:分数乘整数的意义与整数乘法的意义是相同的,都是求几个相同加数的和的'简便运算。
1.推导算理:
由分数乘整数的意义导入。
表示什么意义?引导学生说出表示求3个 的和。板书: + + 。学生计算,教师板书: 。提示:分子中3个2连加简便写法怎么写?学生答后板书: (块)教师说明:计算过程中间的加法算式部分是为了说明算理,计算时省略不写。(边说边加虚线)
2.引导观察: 的分子部分、分母与算式 两个数有什么关系?(互相讨论)
观察结果: 的分子部分2×3就是算式中 的分子2与整数3相乘,分母没有变。
3.概括总结:
请根据观察结果总结 的计算方法。(互相讨论)
汇报结果:(多找几名学生汇报)使学生得出 是用分数 的分子2与整数3下乘的积作分子,分母不变。
根据 的计算过程,明确指出:分子、分母能约分的要先约分,然后再乘。约分进约得的数要与原数上下对齐。然后让学生将 按简便方法计算。
(启发学生通过合作学习,学习总结、归纳,培养学生的语言表达能力和逻辑思维能力)
(三) 反馈练习:
1.看图写算式。
订正时让学生说出乘法的意义各表示什么?
2.口答列算式:
=( )×( )
3个 是多少? 5个 是多少?
订正时让学生说一说为什么这样列式。
三、全课小结
这节课我们学习了什么?引导学生回顾总结。
?板书设计】
分数乘整数
+ + + = = = (个)
= = (个)
分数除整数的教案篇6
教学目标
掌握把整数或带分数化成假分数的方法.
教学重点
掌握把整数或带分数化成假分数的方法.
教学难点
把带分数化成假分数.
教学步骤
一、铺垫孕伏
1.口算.
0.45÷15 1.53-0.7 0.4×0.8 4.8×0.02 0.3÷1.5
0.8-0.37 7.8+0.9 0.8×0.5 14-7.4 32+1.68
2.口答.
(1)各表示什么意义?
(2)2个是几分之几?5个是几分之几?12个是几分之几?
3.把下面的假分数化成整数或带分数.
教师提问:xx,表示什么?(表示1与的和)
二、探究新知
你会把假分数化成整数或带分数,那你能把3和化成假分数吗?今天咱们就来学习把整数或带分数化成假分数。(板书课题)
(一)教学例5
1.例5.把1化成分母分别是2、3、4、5……的分数。
出示图片:
2.分别用分数表示出图中阴影部分.(板书)
教师提问:说说为什么这样表示?
3.分组讨论:这说明了什么?
1可以化成分母是任意分数的'假分数。
4.学生举例
(二)教学例6
1.例6.把2和5分别化成分母是3的假分数。
2.学生分组讨论:把2化成分母是3的假分数应怎样想?
想:1里面有3个;2里面有(3×2)个,即,所以。
3.学生试做:把5化成分母是3的假分数。
教师提问:怎样把2和5化成分母是其他数的假分数?由此你得出什么结论?
学生归纳:整数都可以化成分母是任意自然数的假分数.把整数化成假分数,用指定的分母作分母,用分母和整数的乘积作分子。
4.思考:怎样把1、2和5分别化成分母是1的假分数。
归纳总结:把一个整数化成分母是1的假分数,假分数的分子就是这个整数本身,所以整数都可以看成分母是1的分数。
5.练习
(三)教学例7
1.例7.把化成假分数
出示图片
2.分组讨论:是由哪两部分合成的?怎样把化成假分数?
明确:由整数部分2和分数部分合成.把化成假分数时,先把整数2化成分数,再把它和真分数部分合起来。是10个,是4个,合起来是14个,就是,所以。
3.总结:把带分数化成假分数,用原来的分母作分母,用分母和整数的乘积再加上原来的分子作分子.
4.练习:把下面带分数化成假分数,写出计算过程。
三、课堂小结
今天你学会了什么知识?
四、随堂练习
1.在下面的括号里填上适当的数。
2.在下面的○里填上“>”、“<”或“=”。
五、布置作业。
把下面的带分数化成假分数。
六、板书设计
把整数或带分数化成假分数
例5.把1化成分母分别是2,3,4,5,…的分数。
例6.把2和5分别化成分母是3的假分数。
例7.把化成假分数。
分数除整数的教案篇7
教学内容:整数、带分数化成假分数
教学目标:
1、理解并掌握把整数、带分数化成假分数的方法,能正确的把整数、带分数化成假分数。
2、通过这两节课的计算,让学生体验形式与实质的关系进行初步的辨证唯物主义观点的教育。
教学过程:
一、复习
假分数化成整数、带分数的过程。
二、引入新课
例4把1化成分母是2、3、4、5的分数
分析:一个圆可以分成2个1/2,3个1/3,4个1/4,5个1/5。所以1=2/2=3/3=4/4=5/5
结论:把整数”1“平均分成2份,
1可以表示分子、分母是任意自然数,而且分子和分母相同的假分数。
例5把2和4分别化成分母是3的假分数
分析:因为1里面有3个1/3,所以2里面有(3×2)个1/3.,4里面有(3×4)个1/3。
讨论:
(1)整数化假分数,用指定的.分母做分母,用整数与分母相乘的积做分子。
(2)整数可以化成分母是任意自然数的假分数。
(3)任何自然数,都可以写成分母是1的假分数,并用这个自然数做分子。
例6把二又四分之三化成假分数
分析:2里面有(2×4)个1/4,再加上3个1/4,一共是(4×2+3)个1/4,
讨论:带分数化假分数,用原来的分母做分母,用整数和原来的分母相乘的积,再加上原来的份数部分的分子,
三、巩固练习
1、练一练
比较下面每组数的大小
四、
归纳
1、整数化成假分数,用指定的分母做分母,用整数和指定的分母相乘的积做分子,
2、带分数化假分数,用原来的分母做分母,用整数部分和原来的分母相乘的积,再加上原来的分数部分的分子做分子。
五、布置作业
反思:把整数、带分数化成带分数我觉得应遵从这样的教学过程:
1、首先应加强“1”的训练,强化1里面有2个1/2,3个1/3,4个1/4…………………。
2、在教学2里面有几个1/2、1/3、1/4………..。3里面有几个1/2、1/3、1/4………..让学生知道整数就有整数×分母个几分之几。
3、然后在教学带分数转化成假分数。
分数除整数的教案篇8
【教学目标】
1.使学生通过自主探索,了解分数乘整数的意义,知道“求几个几分之几相加的和”可以用乘法计算,初步理解并掌握分数乘整数的计算方法。
2.使学生在探索分数乘整数计算方法的过程中,运用已有知识和经验主动进行探索性思考,并进行分析和归纳。
3.在探索计算方法的过程中,体验探索学习的乐趣,获得成功的体验。
【教学重难点】
理解分数乘整数的意义及分数乘整数计算方法的推导过程,能准确地进行计算。
【教学准备】
多媒体课件
【教学过程】
一、创设情境,自主探索
谈话:同学们,学校要举行一次小手艺展示活动,班里有一位小强同学也想参加。看,他准备制作两个漂亮的风筝,这两个风筝还带有长长的尾巴呢。可就在制作这个风筝尾巴的`时候,小强遇到困难了,我们都来帮帮他,好吗?(课件出示信息)
谈话:从图中你收集到了哪些数学信息?
谈话:你能根据这组信息,提出一个数学问题吗?全班交流,
板书学生所提有价值问题:
做小鸟风筝的尾巴,一共需要多少米布条?(板书)
(2)做小鱼风筝的尾巴,一共需要多少米布条?(板书)
?设计意图】创设贴近学生生活实际的情境,以小强遇到困难了,我们都来帮帮他为契机,激发学生的学习兴趣,调动起学生自主探究解决问题的热情,为学生理解、感悟知识奠定基础。
二、算法交流,分析比较
(一)探索分数乘整数的意义。
1.独立思考,自主探索
谈话:求做小鸟风筝的尾巴,一共需要多少米布条,你会列式吗?
学生可能会出现以下算式:(根据学生的回答课件随机出示)
xxxxx
追问:你为什么这样列式?
相加的和,也可以用乘法计算?
明确:相同整数连加可以用乘法算式表示,由此可以联想到相同分数连加也可以用乘法算式表示。联想是一种很有意义的学习方法。所以分数乘整数的意义与整数乘法的意义相同,都是求几个相同加数的和的简便运算。
谈话:比较
这组乘法算式,跟我们以前学的有什么不同?
导出课题:分数乘整数(板书)
?设计意图】分数乘整数的意义是为探究分数乘整数的计算方法服务的,在教学中,从做风筝尾巴要用多少米布条的实际问题为起点,引出分数乘整数的计算问题。把原来的乘法概念扩展到分数范围,激活了学生已有的知识经验,沟通了新旧知识的联系,初步了解了分数乘整数的意义。
(二)探索分数乘整数的计算方法。
1.独立计算感知算法。
谈话:你能尝试计算
1/2×5吗?请你在练习本上独立完成,写完之后在小组内交流一下自己的想法。
2. 算法交流,分析比较
谈话:你能交流一下你的算法吗?学生可能会出现以下方法:
(根据学生回答课件随机出示)
三、沟通优化,促进发展。
(1)算法的初步优化
谈话:你会计算7/18×9吗?请用自己喜欢的方法计算。
学生尝试独立计算后全班汇报交流。(根据学生回答课件随机出示)
谈话:比较一下这两种方法,你有什么感受?
小结:用相加和转化成小数的方法在计算中都存在很大的局限性,看来直接相乘的方法简便,易于计算。学生小结分数乘整数的计算方法。
(2) 探索计算中的简便方法
谈话:你能独立解决做小鸟风筝的尾巴,一共需要多少米布条这个问题吗?(学生独立算,然后小组交流)。
分数除整数的教案8篇相关文章: