只有提前准备好教案,我们在实际的课堂上才能更加笃定,我们写的教案一定要结合实际的教学进度和教学能力,以下是淘一范文网小编精心为您推荐的六年级下册数学圆柱的体积教案6篇,供大家参考。
六年级下册数学圆柱的体积教案篇1
教学内容:
九年义务教育六年制第十二册第36~37页例4、例5及做一做,练习八的第1、2题。
教学目标:
1、理解圆柱体体积公式的推导过程,并会正确地计算出圆柱的体积。
2、培养学生的迁移能力、逻辑思维能力,并进一步发展空间观念。
3、引导学生探索和解决问题,体验转化及极限的思想方法。
教学重点:圆柱体体积的计算.
教学难点:理解圆柱体体积公式的推导过程.
教具:多媒体课件、圆柱形容器、水、橡皮泥。
教学过程:
一、激凝导入
师: 大家都知道,水是生命之源!我们要养成节约用水的好习惯。可前两天,老师家的水龙头出了问题,你们看,一刻钟就滴了这么多水。(出示装有水的圆柱容器。)
(1)启发思考:容器里面的水形成了什么形状?(圆柱)你能知道这些水的体积吗?你能想什么办法知道它的体积?
(2)生回答。
2、出示橡皮泥捏成的圆柱体。
那你有办法求出这个圆柱体橡皮泥的体积吗?
生(热情的):老师将它捏成长方体或正方体就可以了!
3、创设问题情境。
师小结:这么说同学们都有办法将一些圆柱形的物体转化为长方形或正方体来求它们的体积,大家真了不起!那如果我们要求某些建筑如(出示课件:人民大会堂东门前的门柱和压路机大前轮)雄伟的人民大会堂东门前的一个圆柱形门柱的体积,或者求压路机圆柱形大前轮的体积,还能用刚才同学们想出来的办法吗?(不能)
那怎么办?
学生试说出自己的办法。
师:看起来前面这些方法虽然可行,但有一定的局限性,我们必须找到一个解决任意圆柱体积的方法才行,是不是?今天,就让我们来共同研究解决任意圆柱体积的方法。(板书课题:圆柱的体积)
二、经历体验、探究新知
1、推导圆柱的体积公式。
师:你们打算怎么去研究圆柱的体积?
小组同学讨论研究的方法。
2、学生动手操作感知
(1)学生以小组为单位操作体验。(操作学具,进行拼组)。
(2)学生小组汇报交流:
近似长方体的体积等于圆柱的体积;近似长方体的底面积等于圆柱的底面积;近似长方体的高就是圆柱的高。根据长方体的体积等于底面积乘高,得出圆柱体的'体积也等于底面积乘高。。。。。。
(3)想像:如果把圆柱像这样等分成32份、64、128份后再拼起来,会怎么样?有怎样的变化趋势?分成无数份呢?(平均分的份数越多,拼起来的近似长方体的长越近似于直线,这样整个图形越近似于长方体。如果照这样分成无限多份,拼出的图形就是长方体)
3、教师课件演示圆柱转化成长方体的过程。
4、师生共同推导出圆柱的体积公式:
长方体的体积=底面积高
圆柱的体积=底圆柱面积高
v = sh
5、巩固公式
①v、s、h各表示什么?
②知道哪些条件就可以求圆柱的体积?
а、知道底面积和高可以直接用公式计算圆柱的体积;
b、知道底面半径和高,可以先计算出底面积,再计算体积;
c、知道底面直径和高,要先算出半径,再算出底面积,最后才能计算出圆柱的体积。
学生回答后师板书。
6、教学例4、例5。
课件分别出示例4、例5,让学生找出题中的条件和问题,然后独立完成,集体订正。
三、实践练习
1、出示课件:人民大会堂东门前的门柱和压路机大前轮的有关数据求出它的体积。
2、拓展延伸:同学们到工厂参加社会实践。工人师傅拿出一块长、宽、高分别是6厘米、5厘米、4厘米的长方体,问:同学们,现在我们要把这块木料加工成一个体积最大的圆柱体,你们想一想,圆柱的底面直径和高应是多少?小林想了想说:我知道了。
同学们,你们知道小林是怎样想的吗?
四、课堂总结;
通过本节课的学习,你有什么收获?
六年级下册数学圆柱的体积教案篇2
教学内容:
本内容是六年级下册第8页至第9页。
教材分析:
本节内容是在学生了解了圆柱体的特征,掌握了圆柱表面积的计算方法基础上进行教学的,是几何知识的综合运用,为后面学习圆锥的体积打下基础,教材重视类比,转化思想的渗透,引导学生经历“类比猜想——验证说明”的探索过程,掌握圆柱体积的计算方法。
学生分析:
学生已掌握了长方体和正方体体积的计算方法以及圆的面积计算公式的推导过程,在圆柱的体积这节课化的体现动手实践,自主探索,合作交流,为突破重、难点。本节课在教法和学法上从以下几方面着手:先利用教具通过直观教学让学生观察,比较,动手操作,经历知识产生的过程,发展学生思维能力;让学生通过“类比猜想——验证说明”的探索过程,主动学习,掌握知识形成技能,合作探究学习成为课堂的主要学习方式。
学习目标:
1、使学生理解和掌握圆柱体积的计算方法,在推导圆柱体积计算公式的过程中培养学生初步的空间观念和动手操作的技能。
2、使学生能够通过观察,大胆猜想和验证获得新知识在教学活动过程中发展学生的推理能力,渗透转化思想。
3、引导学生积极参与数学学习活动,培养学生的数学意识和合作意识。
教学过程:
出示教学情境:一个杯子能装多少水呢?
想一想:杯子里的水是什么形状?准备用什么方法来计算水的体积?
让学生讨论得出:把杯子里的水倒入长方体或正方体容器,只要量出相关数据,就能求出水的体积;倒入量筒里直接得到水的体积。
(设计意图:让学生根据自己已有的知识经验,把圆柱形杯子里的水倒入长方体或正方体容器,使形状转化成自己熟悉的长方体或正方体,只要求出长方体或正方体的体积就知道水的体积。)
出示第二情境:圆柱形的木柱子的体积是多少?用这种方法还行吗?怎么办?
(设计意图:创设问题情境,引起学生认知冲突,激起学生求知欲望,使学生带着积极的思维参与到学习中去,从而产生认知的飞跃。)
探究新知:怎样计算圆柱的体积?(板书课题:计算圆柱的体积)
大胆猜想:你觉得圆柱体积的大小和什么有关?圆柱的体积可能等于什么?(说说猜想依据)
长方体,正方体的体积都等于“底面积×高”猜想圆柱的体积也可能等于“底面积×高”。
(设计意图:在新知识的探索中,合理的猜测能为探索问题,解决问题的思维方向起到导航和推进作用。)
验证:能否将圆柱转化为学过的立体图形?
让学生利用学具动手操作来推导圆柱体积公式(小组合作探究:给学生提供充分的时间和空间),引导学生把圆柱体底面平均分成多个小扇形,沿着高切开,拼成一个近似的长方体。
思考:圆柱体转化成长方体为什么是近似的长方体?怎样才能使转化的立体图形更接近长方体?
(设计意图:让学生明确圆柱体的底面平均分成的扇形越多拼成的立体图形就越接近于长方体,渗透“极限”的思想。)
用课件展示切拼过程,让学生观察等分的份数越多越接近长方体,弥补直观操作等分的份数太多不易操作的缺陷。
学生讨论交流:
1、把圆柱拼成长方体后,什么变了,什么没变?
2、拼成的长方体与圆柱之间有什么联系?
3、通过观察得到什么结论?
得到:圆柱的体积=底面积×高
v=sh=πr2h
(设计意图:在数学活动中通过观察比较培养学生抽象概括能力,及逻辑思维能力。)
练习设计:
1、计算下面各圆柱的体积。
(1)s=60cm2 h=4cm(2)r=1cm h=5cm(3)d=6cm h=10cm
2、算一算:已知一根柱子的底面半径为0。4米,高为5米,你能算出它的体积吗?
(设计意图:使学生达到举一反三的效果,从而训练学生的.技能,灵活掌握本课重点。)
3、试一试:
(1)一个圆柱形水桶,从桶内量得底面直径是3分米,高是4分米,这个桶的容积是多少升?
(2)一根圆柱形铁棒,底面周长是12。56厘米,长是100厘米,它的体积是多少?
(设计意图:运用圆柱的体积计算公式解决生活实际问题,切实体验到数学源于生活,身边处处是数学。)
4、拓展练习:
(1)填表:
填表后观察:你发现了什么?先独立思考,再小组交流,最后汇报。
(设计意图:在教学时应找出知识间存在着的密切联系,帮助学生建立一个较为完整的知识系统,为以后“比例”的教学作了孕伏)
(2)一个柱形容器的底面直径是10厘米,把一块铁块放入这个容器后,水面上升2厘米,这块铁块的体积是多少?
(设计意图:体会测量不规则物体体积的方法,认识到数学的价值体验,使学生的思维处于积极的状态,培养学生思维灵活性,提高学生创造性解决问题的能力。)
课堂小结:谈谈这节课你有哪些收获?
(设计意图:采用提问式小结,让学生畅谈本节课的收获,包括知识,能力,方法,情感等,通过对本节课所学知识的总结与回顾,培养学生的归纳概括能力,使学生学到的知识系统化,完整化。)
教学反思:
本节课采用新的教学理念,创设情境导入渗透转化思想,让学生在兴趣盎然中径历自主探究,独立思考、合作交流从而获得新知。
情境导入渗透转化思想激发学生的学习欲望,课的开始让学生想方法测量出圆柱形水杯中水的体积,学生想出把水倒入长方体容器中转化成长方体的体积来计算出水的体积,初步引导学生把圆柱体的体积转化为长方体的体积。教会学生数学方法,注重让学生在操作中探究,动手操作能展示学生个体的实践活动,在动手过程中易于激发兴趣,积累知识,发展思维,利于每一位学生自主,独立,创造性的学习知识,发展他们的能力,课中让学生经历知识产生的过程,理解和掌握数学基础知识,让学生在体验和探索过程中不断积累知识,逐步发展其空间观念,促进学生的思维发展。
六年级下册数学圆柱的体积教案篇3
教学内容:
教材第15~16页的例4和第16页的试一试、练一练,完成练习三第1~3题。
教学目标:
1.结合具体情境和实践活动,了解圆柱体积(包括容积)的含义,进一步理解体积和容积的含义。
2.经历类比猜想验证说明的探索圆柱体积的计算方法的进程,掌握圆柱体的计算方法,能正确计算圆柱的体积,并会解决一些简单的实际问题。
3.引导学生探索和解决问题,渗透、体验知识间相互转化的思想方法。
重点难点:
掌握圆柱体积公式的推导过程。
教学资源:
ppt课件 圆柱等分模型
教学过程:
一、联系旧知,设疑激趣,导入新课。
1.呈现例4中长方体、正方体和圆柱的直观图。
2.提问:这几种立体的体积你都会求吗?你会求其中哪些立体的体积?
启发:大家想不想知道圆柱的体积怎样计算?猜想一下:圆柱体积的大小与什么有关?怎么算?
3.引入:我们的'猜想对不对呢?今天我们就一起来探索一下圆柱的体积计算公式。
二、动手操作,探索新知,教学例4
1.观察比较
引导学生观察例4的三个立体,提问
⑴这三个立体的底面积和高都相等,它们的体积有什么关系?
⑵长方体和正方体的体积一定相等吗?为什么?
⑶圆柱的体积与长方体和正方体的体积可能相等吗?为什么?
2.实验操作
⑴谈话:大家都认为圆柱的体积与长方体、正方体的体积可能是相等的,而且都等于底面积乘高。那用什么办法验证呢?让学生在小组中说说自己的想法。
提醒:圆的面积公式是怎么推导出来的?我们能不能将圆柱转化成长方体呢?
⑵提出要求:你能想办法把圆柱转化成长方体吗?各小组说出自己的想法,有条件的拿出课前准备好的圆柱,操作一下。
⑶讨论交流:如果把圆柱的底面平均分成16份,切开后能否拼成一个近似的长方体?
操作教具,让学生观察。
引导想像:如果把底面平均分的份数越来越多,结果会怎么样?
演示一组动画(将圆柱底面等分成32份、64等份、128等份)课件演示使学生清楚地认识到:拼成的立体会越来越接近长方体。
3.推出公式
⑴提问:拼成的长方体与原来的圆柱有什么关系?
指出:长方体的体积与圆柱的体积相等;长方体的底面积等于圆的底面积;长方体的高等于圆柱的高。
⑵想一想:怎样求圆柱的体积?为什么?
根据学生的回答小结并板书圆柱的体积公式
圆柱的体积=底面积高
⑶引导用字母公式表示圆柱的体积公式:v=sh
长方体的体积 = 底面积 高
圆柱的体积 = 底面积 高
用字母表示计算公式v= sh
三、分层练习,发散思维,教学试一试
⑴让学生列式解答后交流算法。
⑵讨论:知道什么条件就一定能算出圆柱的体积了?分别怎么算?
(s和h,r和h,d和h,c和h)
四、巩固拓展练习
1.做练一练第1题。
⑴说一说:这两个圆柱中都是已知什么?能算出圆柱的体积吗?
⑵各自练习,并指名板演。
⑶对照板演,说说计算过程。
2.做练一练第2题。
已知底面周长和高,该怎么求它的体积呢?引导学生根据底面周长求出底面积。
五、小结
这节课我们学习了什么?有哪些收获?还有什么疑问?
六、作业
练习三第1~3题。
六年级下册数学圆柱的体积教案篇4
教学目标:
1、理解圆柱体积公式的推导过程。
2、能够初步地学会运用体积公式解决简单的实际问题。
3、进一步提高学生解决问题的能力。
教学重、难点:
1、理解圆柱体积公式的推导过程。
2、能够初步地学会运用体积公式解决简单的实际问题。
3、理解圆柱体积公式的推导过程。
教学准备:
圆柱切割组合模具、小黑板。
教学过程:
一、创设情境,生成问题
1、什么是体积?( 物体所占空间的大小叫做物体的体积。)
2、长方体的体积该怎样计算?归纳到底面积乘高上来。
3、圆的面积怎样计算?
二、探索交流,解决问题
1、计算圆的面积时,是把圆面积转化成我们学过的长方形进行计算的,能不能把圆柱转化成我们学过的立体 图形来计算它的体积?
(启发学生思考。)
2、把圆柱的底面分成许多相等的扇形(16等分),然后把圆柱沿高切开,可能会拼成怎样的图形?教师演示,引导学生进行观察。
3、思考:
(1)圆柱切开后可以拼成一个什么形体?(长方体)
(2)通过实验你发现了什么?
小组讨论:实验前后,什么变了?什么没变?
讨论后,整理出来,再进行汇报。
(拼成的近似长方体体积大小没变,形状变了,拼成的.近似长方
体和圆柱相比,底面形状变了,由圆变成了近似长方形,而底面的面积大小没有发生变化。近似长方形的高就是圆柱的高,没有变化。)
4、推导圆柱体积公式
小组讨论:怎样计算圆柱的体积?
学生汇报讨论结果。
长方体的体积可以用底面积乘高来计算,而在推导过程中,长方体的底面积就是圆柱的底面积,高就是圆柱的高,所以圆柱的体积也可以用底面积乘高来计算。
师:圆柱的体积怎样计算?用字母公式,怎样表示?
板书: v=sh
5、算一算:已知一根柱子的底面半径为0.4米,高为5米。你能算出它的体积吗?
三、巩固应用练习。
1、一个圆柱形水桶,从桶内量得底面直径是3分米,高是4分米,
这个水桶的容积是多少升?
说明:求水桶的容积,就是求水桶的体积。想一想先求什么?
2、一根圆柱形铁棒,底面周长是12.56厘米,长是100厘米,它的体积是多少?
先求底面半径再求底面积,最后求体积。
已知底面周长对解决问题有什么帮助吗?必须先求出什么? 四:课堂小结:
通过这节课你学会了哪些知识,有什么收获?五:课后作业:
教材第9页,练一练第1、3、4、题
六年级下册数学圆柱的体积教案篇5
一、教学内容:
人教版教材六年级下册19——20页例5例6及相关的练习题。
二、教学目标:
1、结合具体情境和实践活动,了解圆柱体积(包括容积)的含义,进一步理解体积和容积的含义。
2、经历“类比猜想——验证说明”的探索圆柱体积计算方法的过程,掌握圆柱体积的计算方法,能正确计算圆柱的体积。并会解决一些简单的实际问题。
3、注意渗透类比、转化思想。
三、教学重点:
理解、掌握圆柱体积计算的公式,能运用公式正确地计算圆柱的体积。
四、教学难点:
推导圆柱的体积计算公式。
五、教法要素:
1、已有的知识和经验:体积、体积单位,学习长方体正方体的体积公式的经验。
2、原型:圆柱模型。
3、探究的问题:
(1)圆柱的体积和什么有关?圆柱能否转化成已学过的立体图形来计算体积?
(2)把圆柱拼成一个近似的长方体后,长方体的长、宽、高是圆柱的哪个部分?
(3)怎样计算圆柱的体积?
六、教学过程:
(一)唤起与生成。
1、什么叫物体的体积?我们学过哪些立体图形的体积计算?
2、长方体和正方体的体积怎样计算?它们可以用一个公式表示出来吗?
切入教学:怎样计算圆柱的体积?圆柱的体积计算会和什么有关?
(二)探究与解决。
探究:圆柱的.体积
1、 提出问题,启发思考:如何计算圆柱的体积?
2、 类比猜测,提出假设:结合长方体和正方体体积计算的知识,即长方
体和正方体的体积都等于底面积×高,据此分析并猜测圆柱的体积与谁有关,有什么关系;提出假设,圆柱的体积可能等于底面积×高。
3、 转化物体,分析推理:
怎样来验证我们的猜想?我们在学圆的面积时是把圆平均分成若干份,然后拼成一个近似的长方形,推导出圆的面积计算公式。我们能不能也把圆柱转化为我们学过的立体图形呢?应该怎样转化?结合圆的面积计算小组讨论。学生汇报交流。
(拿出平均分好的圆柱模型,圆柱的底面用一种颜色,圆柱的侧面用另一种颜色,以便学生观察。)现在利用这个圆柱模型小组合作把它转化为我们学过的立体图形。学生在小组合作后汇报交流。
4、全班交流,公式归纳:
交流时,要学生说明拼成的长方体与原来的圆柱有什么关系?圆柱的底面积和拼成的长方体的底面积有什么关系?拼成的长方体的高和圆柱的高有什么关系?引导学生推导出圆柱的体积计算方法。圆柱的体积=底面积×高。(在这一过程中,使学生认识到:把圆柱平均分成若干份切开,可以拼成近似的长方体,这样“化曲为直”,圆柱的体积就转化为长方体的体积,分的份数越多,拼起来就越接近长方体,渗透“极限”思想。)教师板书计算公式,并用字母表示。
回想一下,刚才我们是怎样推导出圆柱的体积计算公式的?
5、举一反三,应用规律:
(1)你能用这个公式解决实际问题吗?20页做一做,学生独立完成,全班订正。
如果我们只知道圆柱的半径和高,你能不能求出圆柱的体积?引导学生推导出v=∏r2h
(2)教学例6
学生审题之后,引导学生思考:解决这个问题就是要计算什么?然后指出求杯子的容积就是求这个圆柱形杯子可容纳东西的体积,计算方法跟圆柱体积的计算方法一样,再让学生独立解决。反馈时,要引导学生交流自己的解题步骤,着重说明杯子内部的底面积没有直接给出,因此先要求底面积,再求杯子的容积。
(三)训练与强化。
1、基本练习。
练习三第1题,学生独立完成,这两个都可以直接用v=sh来计算。全班订正,注意培养学生良好的计算习惯。
2、变式练习。
第2题,这题中给的条件不同,不管是知道半径还是直径,我们都要先求出底面积,再求体积。学生独立完成,在交流时,注意计算方法的指导。
第3题。求装多少水,实际是求这个水桶的容积。学生独立完成,全班交流。水是液体,单位应用毫升或升。
3、综合练习。
第5题。这题中知道了圆柱的体积和底面积求高,引导学生推出h=v÷s,如果有困难,也可列方程解答。学生独立完成,有困难的小组交流。
4、提高性练习。22页第10题,学生先小组讨论,再全班交流。
(四)总结与提高。
这节课我们是怎样推导出圆柱体积的计算方法的?圆柱和长方体、正方体在形体上有什么相同的地方?像这样上下两个底面一样,粗细不变的立体图形叫做直柱体,直柱体的体积都可以用底面积×高计算。出示几个直柱体(例:三棱柱、钢管等),让学生计算出他们的体积。
六年级下册数学圆柱的体积教案篇6
教学内容:
北师大版教学六年级《圆柱的体积》
教学目标:
1、结合具体的情境和实践活动,理解圆柱体体积的含义。
2、经历探索圆柱体积计算方法的过程,掌握圆柱体积的计算方法,能正确计算圆柱的体积,并会解决一些简单的实际问题。
3、培养学生初步的空间观念和思维能力;
教学重点:
理解和掌握圆柱的体积计算公式,会求圆柱的体积。
教学难点:
理解圆柱体积计算公式的推导过程。
教具准备:
圆柱体积演示教具。
教学过程:
一、旧知铺垫
1、谈话引入
最近我们认识了圆柱和圆锥,还学会了计算圆柱的表面积。现在请看老师的这个圆柱形杯子和这个圆柱比较,谁大?这里所说的大小实际是指它们的什么?(生答)
2、提出问题:什么叫体积?我们学过那些图形的体积?怎么算的.?(生答师随之板书)
这节课我们就来学习圆柱的体积。
二、自主探究,解决问题
(一)认识圆柱体积的意义。
圆柱的体积到底是指什么?谁能举例说呢?
(二)圆柱体积的计算公式的推导。
1、我们学过长方体和正方体体积的计算,圆柱体的体积跟什么有关呢?你会有怎样的猜想?(小组内说说)
2、回忆圆面积的推导过程。
3、教具演示。
(1)取圆柱体模型。
(2)将圆柱体切成两半。
(3)分别将两半均分成若干小块。
(4)动手拼成一个近似的长方体。
(三)归纳公式。
(板书:圆柱的体积=底面积高)
用字母表示:(板书:v=sh)
三、巩固新知
1、这个杯子的底面半径为6厘米,高为16厘米,它的体积是多少?
审题。提问:你能独立完成这题吗?指名一同学板演,其余学生做在练习本上。
现在这个杯子装了2/3的水,装了多少水呢?
2、完成试一试
3、跳一跳:统一直柱体的体积的计算方法。
四、课堂总结、拓展延伸
这节课学习了什么内容?圆柱的体积怎样计算,这个公式是怎样得到的?这个公式适合哪些图形?他们有什么共同特点?
五、布置作业
练一练1-5题。
六年级下册数学圆柱的体积教案6篇相关文章: